Copied to
clipboard

G = C23.424C24order 128 = 27

141st central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.424C24, C22.1652- 1+4, C425C4.8C2, C428C4.30C2, (C22×C4).86C23, (C2×C42).539C22, C23.81C23.11C2, C23.63C23.24C2, C23.83C23.11C2, C2.C42.172C22, C2.21(C22.35C24), C2.52(C22.46C24), C2.67(C23.36C23), C2.30(C22.50C24), (C4×C4⋊C4).59C2, (C2×C4).143(C4○D4), (C2×C4⋊C4).864C22, C22.301(C2×C4○D4), SmallGroup(128,1256)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.424C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.424C24
C1C23 — C23.424C24
C1C23 — C23.424C24
C1C23 — C23.424C24

Generators and relations for C23.424C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=c, e2=f2=a, g2=ba=ab, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 292 in 182 conjugacy classes, 92 normal (82 characteristic)
C1, C2, C4, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C4×C4⋊C4, C428C4, C425C4, C23.63C23, C23.81C23, C23.83C23, C23.424C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2- 1+4, C23.36C23, C22.35C24, C22.46C24, C22.50C24, C23.424C24

Smallest permutation representation of C23.424C24
Regular action on 128 points
Generators in S128
(1 11)(2 12)(3 9)(4 10)(5 70)(6 71)(7 72)(8 69)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 116)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 127)(66 128)(67 125)(68 126)
(1 99)(2 100)(3 97)(4 98)(5 68)(6 65)(7 66)(8 67)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)(69 125)(70 126)(71 127)(72 128)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(91 119)(92 120)(93 121)(94 122)(95 123)(96 124)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 27 11 87)(2 88 12 28)(3 25 9 85)(4 86 10 26)(5 82 70 22)(6 23 71 83)(7 84 72 24)(8 21 69 81)(13 89 73 29)(14 30 74 90)(15 91 75 31)(16 32 76 92)(17 93 77 33)(18 34 78 94)(19 95 79 35)(20 36 80 96)(37 113 97 53)(38 54 98 114)(39 115 99 55)(40 56 100 116)(41 117 101 57)(42 58 102 118)(43 119 103 59)(44 60 104 120)(45 121 105 61)(46 62 106 122)(47 123 107 63)(48 64 108 124)(49 125 109 67)(50 68 110 126)(51 127 111 65)(52 66 112 128)
(1 19 11 79)(2 48 12 108)(3 17 9 77)(4 46 10 106)(5 60 70 120)(6 29 71 89)(7 58 72 118)(8 31 69 91)(13 81 73 21)(14 110 74 50)(15 83 75 23)(16 112 76 52)(18 38 78 98)(20 40 80 100)(22 42 82 102)(24 44 84 104)(25 95 85 35)(26 124 86 64)(27 93 87 33)(28 122 88 62)(30 128 90 66)(32 126 92 68)(34 56 94 116)(36 54 96 114)(37 105 97 45)(39 107 99 47)(41 109 101 49)(43 111 103 51)(53 123 113 63)(55 121 115 61)(57 127 117 65)(59 125 119 67)
(1 43 39 75)(2 104 40 16)(3 41 37 73)(4 102 38 14)(5 94 126 62)(6 35 127 123)(7 96 128 64)(8 33 125 121)(9 101 97 13)(10 42 98 74)(11 103 99 15)(12 44 100 76)(17 109 105 21)(18 50 106 82)(19 111 107 23)(20 52 108 84)(22 78 110 46)(24 80 112 48)(25 117 113 29)(26 58 114 90)(27 119 115 31)(28 60 116 92)(30 86 118 54)(32 88 120 56)(34 68 122 70)(36 66 124 72)(45 81 77 49)(47 83 79 51)(53 89 85 57)(55 91 87 59)(61 69 93 67)(63 71 95 65)

G:=sub<Sym(128)| (1,11)(2,12)(3,9)(4,10)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,68)(6,65)(7,66)(8,67)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(69,125)(70,126)(71,127)(72,128)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,11,87)(2,88,12,28)(3,25,9,85)(4,86,10,26)(5,82,70,22)(6,23,71,83)(7,84,72,24)(8,21,69,81)(13,89,73,29)(14,30,74,90)(15,91,75,31)(16,32,76,92)(17,93,77,33)(18,34,78,94)(19,95,79,35)(20,36,80,96)(37,113,97,53)(38,54,98,114)(39,115,99,55)(40,56,100,116)(41,117,101,57)(42,58,102,118)(43,119,103,59)(44,60,104,120)(45,121,105,61)(46,62,106,122)(47,123,107,63)(48,64,108,124)(49,125,109,67)(50,68,110,126)(51,127,111,65)(52,66,112,128), (1,19,11,79)(2,48,12,108)(3,17,9,77)(4,46,10,106)(5,60,70,120)(6,29,71,89)(7,58,72,118)(8,31,69,91)(13,81,73,21)(14,110,74,50)(15,83,75,23)(16,112,76,52)(18,38,78,98)(20,40,80,100)(22,42,82,102)(24,44,84,104)(25,95,85,35)(26,124,86,64)(27,93,87,33)(28,122,88,62)(30,128,90,66)(32,126,92,68)(34,56,94,116)(36,54,96,114)(37,105,97,45)(39,107,99,47)(41,109,101,49)(43,111,103,51)(53,123,113,63)(55,121,115,61)(57,127,117,65)(59,125,119,67), (1,43,39,75)(2,104,40,16)(3,41,37,73)(4,102,38,14)(5,94,126,62)(6,35,127,123)(7,96,128,64)(8,33,125,121)(9,101,97,13)(10,42,98,74)(11,103,99,15)(12,44,100,76)(17,109,105,21)(18,50,106,82)(19,111,107,23)(20,52,108,84)(22,78,110,46)(24,80,112,48)(25,117,113,29)(26,58,114,90)(27,119,115,31)(28,60,116,92)(30,86,118,54)(32,88,120,56)(34,68,122,70)(36,66,124,72)(45,81,77,49)(47,83,79,51)(53,89,85,57)(55,91,87,59)(61,69,93,67)(63,71,95,65)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,70)(6,71)(7,72)(8,69)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,116)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,127)(66,128)(67,125)(68,126), (1,99)(2,100)(3,97)(4,98)(5,68)(6,65)(7,66)(8,67)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64)(69,125)(70,126)(71,127)(72,128)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,11,87)(2,88,12,28)(3,25,9,85)(4,86,10,26)(5,82,70,22)(6,23,71,83)(7,84,72,24)(8,21,69,81)(13,89,73,29)(14,30,74,90)(15,91,75,31)(16,32,76,92)(17,93,77,33)(18,34,78,94)(19,95,79,35)(20,36,80,96)(37,113,97,53)(38,54,98,114)(39,115,99,55)(40,56,100,116)(41,117,101,57)(42,58,102,118)(43,119,103,59)(44,60,104,120)(45,121,105,61)(46,62,106,122)(47,123,107,63)(48,64,108,124)(49,125,109,67)(50,68,110,126)(51,127,111,65)(52,66,112,128), (1,19,11,79)(2,48,12,108)(3,17,9,77)(4,46,10,106)(5,60,70,120)(6,29,71,89)(7,58,72,118)(8,31,69,91)(13,81,73,21)(14,110,74,50)(15,83,75,23)(16,112,76,52)(18,38,78,98)(20,40,80,100)(22,42,82,102)(24,44,84,104)(25,95,85,35)(26,124,86,64)(27,93,87,33)(28,122,88,62)(30,128,90,66)(32,126,92,68)(34,56,94,116)(36,54,96,114)(37,105,97,45)(39,107,99,47)(41,109,101,49)(43,111,103,51)(53,123,113,63)(55,121,115,61)(57,127,117,65)(59,125,119,67), (1,43,39,75)(2,104,40,16)(3,41,37,73)(4,102,38,14)(5,94,126,62)(6,35,127,123)(7,96,128,64)(8,33,125,121)(9,101,97,13)(10,42,98,74)(11,103,99,15)(12,44,100,76)(17,109,105,21)(18,50,106,82)(19,111,107,23)(20,52,108,84)(22,78,110,46)(24,80,112,48)(25,117,113,29)(26,58,114,90)(27,119,115,31)(28,60,116,92)(30,86,118,54)(32,88,120,56)(34,68,122,70)(36,66,124,72)(45,81,77,49)(47,83,79,51)(53,89,85,57)(55,91,87,59)(61,69,93,67)(63,71,95,65) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,70),(6,71),(7,72),(8,69),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,116),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,127),(66,128),(67,125),(68,126)], [(1,99),(2,100),(3,97),(4,98),(5,68),(6,65),(7,66),(8,67),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64),(69,125),(70,126),(71,127),(72,128),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(91,119),(92,120),(93,121),(94,122),(95,123),(96,124)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,27,11,87),(2,88,12,28),(3,25,9,85),(4,86,10,26),(5,82,70,22),(6,23,71,83),(7,84,72,24),(8,21,69,81),(13,89,73,29),(14,30,74,90),(15,91,75,31),(16,32,76,92),(17,93,77,33),(18,34,78,94),(19,95,79,35),(20,36,80,96),(37,113,97,53),(38,54,98,114),(39,115,99,55),(40,56,100,116),(41,117,101,57),(42,58,102,118),(43,119,103,59),(44,60,104,120),(45,121,105,61),(46,62,106,122),(47,123,107,63),(48,64,108,124),(49,125,109,67),(50,68,110,126),(51,127,111,65),(52,66,112,128)], [(1,19,11,79),(2,48,12,108),(3,17,9,77),(4,46,10,106),(5,60,70,120),(6,29,71,89),(7,58,72,118),(8,31,69,91),(13,81,73,21),(14,110,74,50),(15,83,75,23),(16,112,76,52),(18,38,78,98),(20,40,80,100),(22,42,82,102),(24,44,84,104),(25,95,85,35),(26,124,86,64),(27,93,87,33),(28,122,88,62),(30,128,90,66),(32,126,92,68),(34,56,94,116),(36,54,96,114),(37,105,97,45),(39,107,99,47),(41,109,101,49),(43,111,103,51),(53,123,113,63),(55,121,115,61),(57,127,117,65),(59,125,119,67)], [(1,43,39,75),(2,104,40,16),(3,41,37,73),(4,102,38,14),(5,94,126,62),(6,35,127,123),(7,96,128,64),(8,33,125,121),(9,101,97,13),(10,42,98,74),(11,103,99,15),(12,44,100,76),(17,109,105,21),(18,50,106,82),(19,111,107,23),(20,52,108,84),(22,78,110,46),(24,80,112,48),(25,117,113,29),(26,58,114,90),(27,119,115,31),(28,60,116,92),(30,86,118,54),(32,88,120,56),(34,68,122,70),(36,66,124,72),(45,81,77,49),(47,83,79,51),(53,89,85,57),(55,91,87,59),(61,69,93,67),(63,71,95,65)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim111111124
type+++++++-
imageC1C2C2C2C2C2C2C4○D42- 1+4
kernelC23.424C24C4×C4⋊C4C428C4C425C4C23.63C23C23.81C23C23.83C23C2×C4C22
# reps1212622202

Matrix representation of C23.424C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
400000
040000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
110000
040000
002400
003300
000020
000002
,
110000
340000
001000
000100
000033
000042
,
110000
340000
001200
000400
000010
000034
,
330000
420000
003000
000300
000040
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,1,4,0,0,0,0,0,0,2,3,0,0,0,0,4,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[1,3,0,0,0,0,1,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,3,2],[1,3,0,0,0,0,1,4,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4],[3,4,0,0,0,0,3,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;

C23.424C24 in GAP, Magma, Sage, TeX

C_2^3._{424}C_2^4
% in TeX

G:=Group("C2^3.424C2^4");
// GroupNames label

G:=SmallGroup(128,1256);
// by ID

G=gap.SmallGroup(128,1256);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,723,100,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=c,e^2=f^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽